
7 AD-A56 865 MARYLAND UIV COLLEGE PARK COMPUTER
VISION LAB

F/B 9/ 27FAST LNGUAGE ACCEPTANCE BY SHRINKING CELLULAR AUTOMATAd(U3
APR B0 A ROSFNFELD. A Y WU. T DUBRYZKI AFOSR-77-3271

UUCLASSIF LEO TR!98 AFOSRTR-80-538 ML

END0

~DR.a~Om~LEVEL *

PTJ9q

JUL1t8 I

UNTVERSrrY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEG PARK9 MAXYLAND

2742

80714 125..

LEVF.
/ , _____ .. _(I

~AF~SR-77-3271l

SFAST ;AANGUAGE kCCEPTANCE
BY5HRINKING CELLULAR AUTOMATAq

Azriel -'osenfeld
Angela Y. Wu*
Tsvi Aubitzki -.

Computer Vision Laboratory
Computer Science Center/
University of Maryland
College Park, MD 20742

ABSTRACT . ,

When bounded cellular atomata are used as acceptors for
formal languages, the n zber of time steps required to accept
a string a is at least C, except in certain trivial cases,
since the distinguished cell's state after t steps cannot
depend on the initial states of the cells at distances > t
from it. However, if the automaton is allowed to shrink (i.e.,
cells are deleted, and their predecessors become directly
connected to their successors), language acceptance in less
than linear time becomes possible. 'T DTIC

[)T

* Also with the Department of Mathematics, University of
Maryland Baltimore County, Catonsville, MD 21228.

The support of the U.S. Air Force Office of Scientific Research
under Grant AFOSR-77-3271 is gratefully acknowledged, as is
the help of Kathryn Riley in preparing this paper.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE OF TEA-,.-WMITTAL TO DDC
This tee'::.'! ' ", rei,:j-j and is

appr ;.,! - - . : :.::u i , ' 1:)U -i12 (7b).

A. D. BLuSE

oe.hnica Information Ofioer ,

1. Introduction

It is well known that bounded cellular automata can be used

as acceptors for formal languages [1]. Initially, the string

a to be accepted is input to the automaton C, one symbol per

cell. If this initial configuration leads to a configuration

in which the distinguished cell C0 (usually taken to be the

one at the left end) enters an accepting state, we say that C

has accepted a. Evidently, except in trivial cases, the time

required to accept a is at least jai steps. Indeed, the state

of C0 at time t <jaI cannot depend on the initial states of the

cells at distances >t from Co, so that if C0 accepts in time

< lal, it has not "seen" all of a.

We shall see in this paper that if C is allowed to shrink

(i.e., cells are deleted, and their predecessors become directly

connected to their successors), language acceptance in time less

than O(Jaj) becomes possible. On cellular automata that are

allowed to "reconfigure" themselves see [2].

Section 2 defines the process of language acceptance by

shrinking cellular automata. Section 3 gives examples of lan-

guages that can be accepted in this way in less than linear time,

and Section 4 discusses possible extensions of these ideas from

string languages to array, tree, and graph languages.

J " 4

2. Acceptance

2.1 Parallel parsing

Let G be a grammar, which we assume for simplicity to be

context-free. Conventionally, to parse a given string a, we

find a match in a to the right-hand side of some rule A-a of

G; replace this instance of a by A; and repeat the process.

The parse succeeds if we can reduce a to a single S (the start

symbol of G) by proceeding in this way.

One could imagine parsing a "in parallel" by replacing

many a.' s by Ai's simultaneously, where the rules Ai)ai need

not all be the same. (See [3] on a more restricted form of

parallelism in which, for a given rule A-a, we always replace

every instance of a by A simulatneously.) However, if the a's

overlap, this replacement process may not be well defined; for

example, if 8 is a substring of a, and A-a and B-0 are rules,

where do we put the B relative to the A when we apply both rules?

This problem of overlapping rule right-hand sides can be

avoided if we do not permit any rewriting in places where over-

lap exists; but then it becomes impossible to apply the rule

S-SS to the string Sn (na3) in parallel, since there is over-

lap everywhere.

A better way to avoid the overlap problem is to use a two-

step process of rule application. At the first step, each symbol

in the string has the option of marking itself to indicate that

it is the first symbol of a right-hand side that is to be

rewritten; e.g., if T is the initial symbol of ala2,...

where A1 -OaI, A2-)a2 1... are rules, T can mark itself to indi-

cate which one of these a's, if any, is to be rewritten as

the corresponding A. At the second step, we check to the right

of T out to the length of the chosen rule, to see whether any

other symbols in that interval are also marked. If none are

marked, we replace the chosen a (beginning at T) by A; other-

wise, we do nothing to that part of the string. This process

insures that overlapping right-hand sides will never be re-

written simultaneously.

To illustrate this process, suppose we want to apply the

rule S-SS to the string Sn. Each S (except the last one) has

the option of marking itself to indicate that it and its

successor are to be replaced by a single S. If a given S marks

itself, and the succeeding S has not marked itself, we actually

do this replacement; otherwise, we do not. Suppose that each S

has probability 2 of marking itself; then the probability of

being able to apply the rule at a given S is 1. Thus when we

perform this process in parallel, about Z-of the S's are rewrit-

ten at each stage. This means that the given string Sn can be

3expected to shrink at each stage by a factor of T-, i.e. its

3 3 2successive expected lengths are (approximately) n, 1n, (i4) n,...

The expected number of stages required to shrink Sn to a single

S is thus about 1og41 3n. Thus in this example, our parallel

r *

parsing scheme parses in less than O(n) time. Other examples

will be given in Section 3.

It is not hard to see that the set of strings L p(G) that

can be parsed in parallel in this way, using the rules of a

given context-free grammar G, is exactly LCG). Indeed, at

any stage, when the symbols make the choice as to whether they

should mark themselves, it is possible that only one symbol

chooses to do so, which is what would happen in an ordinary

parse (one rule applied at a time); thus an ordinary parse is

a special case of a parallel parse, which proves that L(G)QL p(G).

Conversely, at any stage of a parallel parse, a set of non-

overlapping a's is rewritten; this could also happen in a se-

quential parse, if the sequence of rule applications happens

to be such that this set of coexisting a's is rewritten before

any other rewriting takes place. Thus a parallel parse can be

simulated by a sequential parse consisting of subsequences of

rules involving coexisting a's, which proves that L p(G)L(G).

Similar remarks apply if G is a context-sensitive grammar;

here parallel rewriting would be allowed as long as the

rewritten substrings do not overlap, even if the contexts over-

lap. Some of the examples in Section 3 will involve context-

sensitive G's.

Mr-

2.2 Shrinking bounded cellular automata

Conventionally, a (one-dimensional) bounded cellular

automaton (BCA) is a string of cells (automata) of fixed

length. In [2] the concept of reconfiguration of a (graph-

structured) BCA was introduced; here connections are allowed

to be shifted from cell to neighboring cell. For our present

purposes we do not need to define a general process of recon-

figuration; we only need a mechanism that permits a cell to

skip over a bounded number of neighbors and connect itself

directly to a cell a bounded distance away. A BCA that is

allowed to do this will be called a shrinking BCA.

This shrinking concept is just what we need to implement

the parallel parsing scheme defined in Section 2.1. At a

given stage of the parse, each cell c checks its right-hand

neighbors, out to a bounded distance, to determine which rules'

right-hand sides, if any, begin at c. Cell c then marks itself

to indicate its choice of which rule to apply, say A-a, or its

choice to apply no rule. Finally, c checks its right-hand

neighbors out to distance ali. If any of them are marked, c

does nothing; if none of them are marked, c changes the symbol

stored in it to A and connects itself directly to the cell just

following the end of a; the cells between c and this cell are

disconnected from the BCA.

-21-M

3. Examples

Example 1: L = {b 2nlnl} the set of strings of even length.

Clearly L1 can be generated by the linear grammar G1

{S-bbSIbb}.* Given a string b2n for some n.l, using this

grammar, the only possible successful parse by a shrinking

cellular automaton has the following sequence of configurations:
bn , 2 (n-1 This2
b2n , b , b2 (n 2) S,...,S. This parse takes linear time,

which is not any faster than a cellular automaton without the

shrinking capacity, nor is it faster than a sequntial finite

state automaton. Indeed, it is not hard to see that when a

linear grammar is used, parallel parsing (even if shrinking is

allowed) is not faster than sequential parsing, since at each

stage, successful reduction can occur only at one place where

the nonterminal symbol is located.

Consider the nonlinear grammar G' = {S+SSIbb). It is easy

to see that Gj generates L1 . Using the same analysis as in

Section 2.1, our parallel parsing scheme parses in less than

linear time. Gi has the disadvantage that if a b associates

with the wrong neighbor, for example, if the second and third

b in bbbb associate and reduce to bSb, then the parse is blocked.

To make sure that each b associates with the correct neighbor,

it must know if its position in the string is odd or even. This

takes at least linear time.

• For simplicity, a grammar <N,T,P,S> is represented by
its productions P.

Using the nonlinear grammar G= {S-SSbSblbb}, our

parallel parsing scheme never blocks and it takes less than

linear time.

It is trivial to generalize the above to languages of

the form {binfljnl} for any i>O.

Example 2: L2 = (strings with equal numbers of b's and c's}

Let G2 be the grammar {S- SSlbScIcSbibclcb}. It is obvious

that G2 generates L2. When a string is parsed in parallel

with this grammar, b's with neighboring c's can be reduced

simultaneously to S for further reduction. The time required

to parse a string a= 0I02.. n is proportional to k+log(n-k)

where k = max{difference of numbers of b's and c's in a12...oi

for lliln}. Thus parsing bic j takes linear time and parsing

(bc)j takes l+log j time.

Using the scheme in Section 2 to avoid the overlap problem

can result in no reduction in a step (even though the probabi-

lity of this is very small), since it is possible for every

symbol to decide not to be rewritten. For a language such as

L2 , the overlap problem can be avoided by giving priority to

S-bc over S-cb, and to S-bSc over S-cSb, as follows: each symbol

c marks itself if it has a b as its left neighbor, and each b

marks itself if it has a c as its right neighbor. At the next

step, the marked pairs of b and c's are rewritten as S's using

S-bc, and unmarked pairs of cb's (if any) are rewritten as S's

using S-cb. Thus cbc is reduced to cS. Similarly, S-bSc is

given priority over S-cSb. This method ensures that some re-

duction (if possible) is done at each step.

Example 3: L3 = {strings with equal number of a's, b's, and c's}

It is well known that L3 is a context sensitive language

which is not context free. To parse L3 in parallel, we can

reduce each pair AB into C', BC into A' and AC into B' (a and

A, b and B, c and C are considered equivalent) to indicate that

a c, a, or b is needed to balance the number of a, b, c's.

Hence A and A', B and B', C and C' cancel each other, while

A' and C', B' and C', A' and B' reduce to B, A, C. In the other

situations a permutation of the symbols is done, for example,

BA' becomes A'B. The shorter the runs of A's, B's, C's are in

a string, the more shrinking can be done at each step and the

faster the string can be parsed. Using the same analysis as in

Example 2, strings of the form ancn take linear time, but most

strings take less than linear time.

Example 4a:(Dyck languages) L4 = {strings of balanced parentheses

of Z typesi for some Z a 1

The grammar {S-SSIbiSciIbici, i=1,2,...) generates L4 , where

bi and ci are the corresponding left and right parentheses.

It is easy to see that the time needed to parse a string of

length 2n in L4 is proportional to k+log(n-k) where k = level of

--

deepest nested pair of parentheses. For t=l, L4 is L2 restricted

to having the number of a's • the number of b's when following

the string from left to right.

Example 4b: Bracketed context free languages

These are the languages generated by context free grammars

in which each rule is of the form A [iw] i where each production

has a different i (i can be regarded as the index of the rule

in the grammar). Parsing a string in this language in parallel

can be done deterministically since the brackets give the order

of reduction and no overlap or blocking problem can occur. In

fact parsing these languages is the same as parsing the Dyck

languages.

4. Extensions

We have shown that using shrinking cellular automata,

many string languages can be parsed in less than linear time.

It is easy to see that this concept of a shrinking cellular

automaton can readily be extended to cycle languages [4] which

can be considered as strings whose two ends are connected.

However, extension to other structures is difficult, as we

shall now see.

If we shrink a part 6 of the interior of an array and re-

place it by a symbol A (or a smaller subarray), there is no way

to connect A to all the cells connected to 6 so that the result-

ing structure remains an array. Even if one is willing to relax

the array requirement, the degree of the cell A may not remain

bounded when such shrinkings are performed repeatedly. An al-

ternative is to allow shrinking only at the array border. How-

ever, this loses the advantages of shrinking, since it is the

same as replacing the discarded parts with special symbols to

indicate that the cells are no longer considered as part of the

array. The same problems also exist for tree languages where

the borders consist of the leaf nodes.

The potential unbounded growth of the degree of cells does

not occur in strings and cycles because each cell has degree at

most 2. For any graph language with an unbounded number of

degree z3 nodes (for example, binary trees), when a subgraph 6

is shrunk to a node A, A should be connected to all the nodes

4'm

that 6 was connected to. This number can grow exponentially.

Therefore, the concept of shrinking is useful for and only for

graphs whose nodes have degree at most 2 except for a bounded

number of them which can have arbitrary degrees.

- -p.----.-

References

1. A. R. Smith, Cellular automata and formal languages,
Proc. llth IEEE Symp. on Switching and Automata Theory,
1970, 216-224; Real-time language recognition by one-
dimensional cellular automata, J. Computer Systems
Science 6, 1972, 233-253.

2. A. Y. Wu and A. Rosenfeld, Local reconfiguration of networks
of processors, University of Maryland Computer Science
Technical Report 730, Feb. 1979.

3. A. Rosenfeld, Isotonic grammars, parallel grammars, and
picture grammars, in Machine Intelligence 6 (B. Meltzer and
D. Michie, eds.), Edinburgh University Press, New York, 1971,
281-294.

4. A. Rosenfeld, A note on cycle grammars, University of
Maryland Computer Science Technical Report 300, April 1974.

DAT

DI

